|
含有芳香多环体系的磷杂六元环化合物及其合成方法 |
技术领域 |
本发明属于有机化学合成领域,具体涉及一种利用金属催化的方法合成含有芳香多环体系的磷杂六元环化合物。 |
背景技术 |
有机π共轭光电功能材料因其种类和结构多样、易于大面积制备以及可以用于柔性电子器件等显著优势,在电致发光二极管、太阳能电池、场效应晶体管、非线性光学材料、生物/化学/光传感器、存储器甚至激光器等领域都展现出广阔的应用前景。将杂原子引入π-共轭体系是一种有效地调节材料光电性能的方法。与其它材料相比,含磷材料可以通过简单的化学修饰(氧化、硫化、季鏻盐化以及金属配位等方式)来调节共轭体系的电子效应,进而调控体系的光电性能,实现材料性能的多样化。 |
文献表明,磷杂六元环化合物可以应用于生物成像的染料(Chem.Eur.J.2019,25,6332–6341,Chem.Commun.2017,53,10954–10957,Chem.Commun.2018,54,299–302),电子受体材料(Chem.Eur.J.2017,23,6988–6992),具有优良的发光性能和稳定性(Angew.Chem.Int.Ed.2018,57,15157–15161)。但是磷杂六元环的合成研究相对较少,限制了该类型化合物的进一步实际应用。到目前为止,以仲磷氧化物为原料,利用催化量的金属盐将磷原子嵌入到芳环骨架中设计合成磷杂六元环化合物的研究未见报道。 |
发明内容 |
针对目前的技术现状,本发明目的在于提供一种新型的合成含有芳香多环体系的磷杂六元环化合物的方法;另一目的在于提供一系列新型含有芳香多环体系的磷杂六元环化合物。 |
为实现本发明目的,所述方法以芳基仲磷氧化物为中间产物,通过自由基环化反应生成磷杂六元环。 |
其通式如下: |
 |
Ar为苯基,卤代苯基,C1-5烷基取代苯基,萘基,芘基、呋喃基、苯并呋喃基,苯基取代的呋喃基,苯并噻吩基、噻吩基,苯基取代的噻吩基,吡咯基、苯基取代的吡咯基,吡啶基,吲哚基,N原子被C1-5烷基取代的吲哚基等芳香环取代基;R,R’分别为氢,卤素原子或C1-5烷基。虚线部分表示存在或不存在。 |
优选:Ar为苯基,卤代苯基,C1-2烷基取代苯基,萘基,芘基、呋喃基、苯并呋喃基,苯基取代的呋喃基,苯并噻吩基、噻吩基,苯基取代的噻吩基,吡咯基、苯基取代的吡咯基,吡啶基,吲哚基,N原子被C1-2烷基取代的吲哚基等芳香环取代基;R为氢;R’为氢。虚线部分表示存在或不存在。 |
其合成路线如下: |
 |
分别取化合物原料I和AgNO3于耐压管中,加入乙腈,加热反应,用31P NMR监测反应进程,当反应完全,向反应体系加入乙酸乙酯和水,然后经萃取,合并有机层,干燥,过滤,减压蒸去溶剂,柱层析分离,得到目标物。 |
Ar,R,R’表述与上述一致。 |
具体如下表结构所述I系列化合物合成得到II系列化合物: |
 |
 |
 |
本发明的优点在于:1.通过少量的银盐催化,在温和的条件下就可以合成一系列其他方法难以合成的磷杂六元环化合物,收率达45%以上。2.通过此方法,可以设计不同结构骨架的化合物,达到调节化合物光学性质的目的。3.得到的新化合物II,可以应用到发光器件方面,具有较好的发光性能。 |
具体实施方式 |
为对本发明进行更好地说明,举实施例下: |
实施例1化合物I-a,I-h,I-i的合成方法,步骤如下: |
a)合成化合物I-a |
 |
化合物A1通过文献方法合成(J.Am.Chem.Soc.2014,1362,801–809)。 |
取A1化合物4.5mmol于50mL的Schlenk瓶中,抽真空换氮气三次,加20mL无水四氢呋喃,随后将体系降温至-78℃,逐滴加入n-BuLi 4.7mmol,将体系置于-78℃反应0.5h。然后加入二乙胺基苯基氯化磷,反应体系自行恢复至室温继续反应1h,通过31P NMR检测原料反应完全,再加入稀盐酸溶液,反应0.5h。反应结束,用乙酸乙酯和水萃取,合并有机相,减压蒸馏,以石油醚:乙酸乙酯=1:1为洗脱剂进行柱色谱分离,得到化合物I-a 1.04g。由于得到的产物是异构体混合物,未进行更多表征,直接用于下一步反应。 |
b)合成化合物I-h |
 |
化合物A2通过文献方法合成(J.Org.Chem.2019,842,957–962)。 |
取A2化合物2mmol于50mL的Schlenk瓶中,抽真空换氮气三次,加入20mL无水四氢呋喃,随后将体系降温至-78℃,逐滴加入n-BuLi 2.2mmol,将体系置于-78℃反应0.5h。然后加入二乙胺基苯基氯化磷,反应体系自行恢复至室温继续反应1h,通过31P NMR检测原料反应完全,再加入稀盐酸溶液,反应0.5h。反应结束,用乙酸乙酯和水萃取,合并有机相,减压蒸馏,以石油醚:乙酸乙酯=1:1为洗脱剂进行柱色谱分离,得到化合物I-h 0.65g。由于得到的产物是异构体混合物,未进行更多表征,直接用于下一步反应。 |
c)合成化合物I-i |
 |
化合物A3通过文献方法合成(J.Org.Chem.2019,844,1725–1733)。 |
取一50mLSchenk瓶,抽换氮气三次,加入3.8mmol化合物A3,4.1mmol邻溴苯硼酸,0.3mmol四(三苯基磷)钯,7.5mmol无水碳酸钾,再加入12mL通过氮气15分钟的DMF,升温至105℃,反应12h。反应结束,用乙酸乙酯和水萃取,合并有机相,减压蒸馏,用石油醚当作洗脱剂进行柱色谱分离,得到化合物A4 0.64g。 |
A4产率:49%,白色固体,.1H NMR(300MHz,CDCl3)δ=7.18–7.23(m,1H),7.26(d,J=1.7Hz,1H),7.27–7.37(m,5H),7.37–7.44(m,2H),7.53–7.61(m,3H)δ7.75–7.81(m,1H).13C NMR(75MHz,CDCl3)δ=111.16(s,CH),116.83,(s,C),120.33,(s,CH),122.93,(s,CH),124.75(s,CH),124.93(s,C),126.30(s,CH),127.93(s,CH),128.45(s,CH),128.56(s,CH),129.73(s,CH),130.06(s,C),130.55(s,C),132.41(s,CH),133.43(s,CH),134.22(s,C),150.95(s,C),153.69(s,C). |
 |
取A4化合物2mmol于50mL的Schlenk瓶中,抽真空换氮气三次,加入8mL无水四氢呋喃,随后将体系降温至-78℃,逐滴加入n-BuLi 2.2mmol,将体系置于-78℃反应0.5h。然后加入苯基二氯化磷,反应体系自行恢复至室温并且反应1h,通过31P NMR检测原料反应完全,再加入水,反应0.5h。反应结束,用乙酸乙酯和水萃取,合并有机相,减压蒸馏,以石油醚:乙酸乙酯=1:1为洗脱剂进行柱色谱分离,得到化合物I-I 0.40g。由于得到的产物是异构体混合物,直接用于下一步反应。 |
其他I系列原料依照结构特点按照与化合物I-a,I-h,I-i合成路线类似的方法合成。 |
实施例2化合物Ⅱ-a至Ⅱ-p的合成方法,步骤如下: |
 |
分别取系列化合物I原料0.2mmol于耐压管中,裹上锡箔纸,加入1mL乙腈和硝酸银催化剂,将体系升温至90℃。通过31P NMR检测反应,待反应结束。经萃取合并有机相,减压蒸馏,柱层析色谱分离,得到系列目标产物II。 |
II-a产率64%,白色固体,31P NMR(121MHz,CDCl3)δ=11.0(s).1H NMR(300MHz,CDCl3)δ=7.27-7.32(m,2H),7.36-7.41(m,1H),7.49-7.63(m,4H),7.67-7.77(m,2H),7.89-8.04(m,4H),8.13-8.24(m,2H),8.34(d,J=7.3Hz,1H),8.46-8.49(m,1H).13C NMR(75MHz,CDCl3)δ=125.60(d,J=102.8Hz,C),125.73(s,CH),125.99(d,J=7.0Hz,CH),126.20(d,J=13.2Hz,CH),126.84(s,CH),127.08(d,J=100.8Hz,C),127.51(s,CH),128.33(s,CH),128.37(d,J=10.8Hz,CH),128.42(d,J=12.6Hz,CH),128.69(s,CH),128.71(d,J=11.6Hz,CH),129.58(d,J=7.2Hz,C),130.09(s,CH),130.49(d,J=10.6Hz,C),130.84(d,J=10.4Hz,CH),131.56(d,J=2.9Hz,CH),132.17(d,J=2.0Hz,CH),132.34(d,J=6.6Hz,CH),133.12(d,J=2.9Hz,CH),133.25(d,J=8.5Hz,C),134.94(d,J=108.9Hz,C),136.63(d,J=2.2Hz,C).138.34(d,J=6.1Hz,C). |
II-b产率59%,白色固体,31P NMR(121MHz,CDCl3)δ=11.4(s).1H NMR(300MHz,CDCl3)δ=7.15-7.30(m,3H),7.38-7.50(m,3H),7.55(t,J=7.0Hz,2H),7.61-7.74(m,2H),7.79-7.97(m,4H),8.08(d,J=8.0Hz,1H),8.29(dd,J=11.3,8.2Hz,1H),8.41(dd,J=13.4,6.8Hz,1H).13C NMR(75MHz,CDCl3)δ=124.88(d,J=2.3Hz,C),125.16(d,J=5.6Hz,CH),125.51(d,J=105.4Hz,C),126.46(d,J=12.7Hz,CH),126.60(s,CH),127.54(s,CH),128.14(d,J=98.1Hz,C),128.58(d,J=12.6Hz,CH),128.73(s,CH),128.93(s,CH),128.94(d,J=10.5Hz,C),129.68(d,J=10.6Hz,CH),130.04(d,J=12.3Hz,C),130.09(d,J=11.2Hz,CH),130.29(s,CH),130.80(d,J=5.4Hz,CH),131.27(d,J=8.0Hz,C),131.61(d,J=3.0Hz,CH),131.74(d,J=8.5Hz,C),131.82(d,J=3.0Hz,CH),132.26(s,CH),134.74(d,J=107.6Hz,C),135.73(d,J=2.2Hz,C).136.98(d,J=6.3Hz,C).HRMS Calcd.forC26H17BrOP[M+H+]455.0195,Found:455.0194. |
II-c产率55%,白色固体,31P NMR(121MHz,CDCl3)δ=11.3(s).1H NMR(300MHz,CDCl3)δ=2.27(s,CH3),7.13-7.36(m,5H),7.43-7.66(m,5H),8.02(dd,J=11.4,8.5Hz,1H),7.92(d,J=8.0Hz,1H),7.85(dd,J=8.3,1.7Hz,1H),8.29-8.42(m,2H).13C NMR(75MHz,CDCl3)δ=24.16(s,CH3),124.83(d,J=105.8Hz,C),125.40(d,J=12.8Hz,CH),125.45(d,J=5.8Hz,CH),126.70(s,CH),127.27(s,CH),128.05(s,CH),128.26(d,J=12.0Hz,C),128.35(d,J=98.4Hz,C),128.39(d,J=12.2Hz,CH),128.64(s,CH),128.88(d,J=11.1Hz,CH),129.13(d,J=0.8Hz,CH),129.55(d,J=10.5Hz,CH),130.27(s,CH),130.30(d,J=10.6Hz,C),130.43(d,J=9.0Hz,C),130.45(d,J=5.6Hz,CH),131.29(d,J=3.1Hz,CH),131.33(d,J=9.0Hz,C),131.79(d,J=3.3Hz,CH),135.51(d,J=106.8Hz,C),135.68(d,J=2.4Hz,C),137.63(d,J=6.7Hz,C),137.94(d,J=1.7Hz,C). |
II-d产率54%,白色固体,31P NMR(121MHz,CDCl3)δ=9.0(s).1H NMR(300MHz,CDCl3)δ=7.42–7.28(m,3H),7.59–7.44(m,3H),7.67(dt,J=10.3,8.1Hz,3H),8.16–7.93(m,4H),8.37–8.20(m,2H),8.47(d,J=7.5Hz,1H).13C NMR(75MHz,CDCl3)δ=125.02(d,J=0.75Hz,CH),125.19(d,J=9.6Hz,CH),126.04(d,J=12.7Hz,CH),126.27(d,J=101.5Hz,C),126.67(s,CH),128.12(d,J=93.6Hz,C),128.29(d,J=11.3Hz,CH),128.40(d,J=12.6Hz,2CH),128.85(d,J=4.4Hz,C),129.14(d,J=7.3Hz,C),130.59(d,J=0.41Hz,CH),130.72(d,J=10.4Hz,2CH),131.39(d,J=3.0Hz,CH),132.20(d,J=6.7Hz,CH),132.42(d,J=2.3Hz,CH),133.07(d,J=6.4Hz,CH),133.37(d,J=8.8Hz,C),133.50(d,J=2.9Hz,CH),135.53(d,J=109.4Hz,C),137.88(d,J=6.5Hz,C). |
II-e产率70%,白色固体,31P NMR(121MHz,CDCl3)δ=8.4(s).1H NMR(300MHz,CDCl3)δ=7.19-7.26(m,1H),7.31-7.47(m,4H),7.58-7.79(m,6H),7.99(d,J=8.3Hz,1H),8.10(d,J=8.2Hz,1H),8.20(dd,J=14.7,7.1Hz,1H),8.45(d,J=7.3Hz,1H).13C NMR(75MHz,CDCl3)δ=106.70(d,J=116.1Hz,C),111.40(s,CH),121.53(s,CH),121.74(d,J=5.0Hz,C),124.16(s,CH),124.96(d,J=1.7Hz,CH),126.06(s,CH),126.35(s,CH),126.55(d,J=13.2Hz,CH),127.33(d,J=6.6Hz,C),127.62(d,J=7.9Hz,C),128.23(d,J=104.1Hz,C),128.61(d,J=12.9Hz,CH),131.30(d,J=11.0Hz,CH),131.73(s,CH),131.82(d,J=3.1Hz,CH),132.70(d,J=9.3Hz,C),133.65(d,J=2.6Hz,CH),134.42(d,J=116.1Hz,C),134.80(d,J=7.9Hz,CH),154.77(d,J=12.1Hz,C),158.53(d,J=15.2Hz,C).HRMS Calcd.for C24H16O2P[M+H+]367.0882,Found:367.0887. |
II-f产率61%,白色固体,31P NMR(121MHz,CDCl3)δ=6.1(s).1H NMR(300MHz,CDCl3)δ=7.25-7.40(m,5H),7.61(dt,J=15.0,7.8Hz,2H),7.72(dd,J=13.1,7.2Hz,2H),7.82(d,J=7.3Hz,1H),7.93(d,J=8.3Hz,1H),7.99(d,J=7.3Hz,1H),8.05(d,J=8.2Hz,1H),8.13(d,J=7.3Hz,1H),8.20(dd,J=14.7,7.2Hz,1H).13C NMR(75MHz,CDCl3)δ=121.98(s,CH),122.99(d,J=103.5Hz,C),124.36(d,J=2.0Hz,CH),125.48(s,CH),125.91(s,CH),126.05(d,J=9.3Hz,C),126.44(s,CH),126.59(d,J=13.2Hz,CH),127.13(d,J=2.1Hz,CH),127.83(d,J=6.6Hz,C),128.30(d,J=103.6Hz,C),128.59(d,J=12.8Hz,CH),131.09(d,J=10.9Hz,CH),131.36(d,J=0.8Hz,CH),131.66(d,J=2.9Hz,CH),132.72(d,J=8.7Hz,C),133.40(d,J=2.8Hz,C),134.51(d,J=7.5Hz,CH),134.85(d,J=112.2Hz,C),138.49(d,J=13.4Hz,C),140.34(d,J=10.2Hz,C),150.22(d,J=8.8Hz,C).HRMSCalcd.for C24H16OSP[M+H+]383.0654,Found:383.0653. |
II-g产率52%,白色固体,31P NMR(121MHz,CDCl3)δ=7.0(s).1H NMR(300MHz,CDCl3)δ=4.13(s,CH3,3H),7.10(t,J=7.5Hz,1H),7.25(t,J=7.5Hz,1H),7.34-7.41(m,4H),7.58-7.68(m,3H),7.74(dd,J=12.9,7.0Hz,2H),7.89(d,J=8.2Hz,1H),8.05(d,J=8.1Hz,1H),8.17(dd,J=14.6,7.0Hz,1H),8.25(d,J=7.5Hz,1H).13C NMR(75MHz,CDCl3)δ=35.31(s,CH3),103.40(d,J=123.9Hz,C),110.14(s,CH),121.12(s,CH),121.76(s,CH),123.79(d,J=5.9Hz,C),124.01(s,CH),125.66(s,CH),126.00(s,CH),126.30(d,J=12.7Hz,CH),127.52(d,J=6.9Hz,C),128.32(d,J=12.7Hz,CH),129.10(d,J=7.3Hz,C),129.12(d,J=102.3Hz,C),130.36(s,CH),131.22(d,J=3.0Hz,CH),131.53(d,J=10.9Hz,CH),133.27(d,J=3.1Hz,CH),133.31(d,J=8.0Hz,C),133.98(d,J=7.5Hz,CH),135.50(d,J=114.6Hz,C),140.44(d,J=11.7Hz,C),142.18(d,J=14.7Hz,C).HRMS Calcd.forC25H19NOP[M+H+]380.1199,Found:380.1201. |
II-h产率55%,白色固体,31P NMR(121MHz,CDCl3)δ=10.1(s).1H NMR(300MHz,CDCl3)δ=7.24-7.37(m,3H),7.51-7.63(m,3H),7.74(t,J=7.8Hz,1H),8.06(t,J=7.7Hz,1H),8.12(s,2H),8.18(ddd,J=13.1,7.5,1.5Hz,1H),8.30-8.36(m,4H),8.41(dd,J=8.2Hz,5.6Hz,1H),8.85(d,J=8.4Hz,1H),8.99(d,J=15.7Hz,1H).13C NMR(75MHz,CDCl3)δ=123.53(s,CH),124.46(d,J=8.4Hz,C),125.39(s,C),125.44(d,J=7.5Hz,C),125.79(d,J=100.8Hz,C),126.09(d,J=9.8Hz,CH),126.24(s,CH),126.62(s,CH),126.62(d,J=9.0Hz,C),127.03(s,CH),127.39(s,CH),127.88(d,J=99.2Hz,C),128.11(d,J=15.3Hz,CH),128.14(d,J=11.6Hz,CH),128.46(d,J=12.5Hz,CH),129.23(d,J=13.1Hz,C),130.39(d,J=10.4Hz,CH),131.18(s,C),131.43(d,J=2.8Hz,CH),132.01(s,C),132.16(d,J=6.4Hz,CH),132.70(d,J=2.2Hz,CH),135.84(d,J=109.2Hz,C),136.16(d,J=5.5Hz,CH),138.62(d,J=6.6Hz,C).HRMS Calcd.for C28H18OP[M+H+]401.1090,Found:401.1092. |
II-i产率45%,白色固体,31P NMR(121MHz,CDCl3)δ=11.8(s).1H NMR(300MHz,CDCl3)δ=7.35-7.45(m,5H),7.52(td,J=7.9,2.9Hz,1H),7.59-7.71(m,6H),7.78(dd,J=11.5,7.4Hz,1H),7.88-7.91(m,2H),7.93-8.00(m,2H).13C NMR(75MHz,CDCl3)δ=111.02(d,J=9.3Hz,C),114.18(d,J=2.7Hz,CH),122.64(d,J=105.8Hz,C),124.24(d,J=7.2Hz,CH),125.59(d,J=6.6Hz,CH),126.26(d,J=12.6Hz,CH),127.96(d,J=11.6Hz,CH),128.48(d,J=12.7Hz,CH),129.04(s,CH),129.51(s,CH),130.01(d,J=102.0Hz,C),130.10(d,J=8.6Hz,C),130.48(s,CH),131.01(d,J=10.8Hz,CH),131.02(s,C),131.38(d,J=2.1Hz,CH),131.53(d,J=2.8Hz,CH),132.51(d,J=4.6Hz,C),133.27(d,J=8.2Hz,CH),135.25(d,J=109.0Hz,C),152.23(d,J=11.6Hz,C),155.11(d,J=2.1Hz,C).HRMSCalcd.for C26H18O2P[M+H+]393.1039,Found:393.1041. |
II-j产率65%,白色固体,31P NMR(121MHz,CDCl3)δ=11.6(s).1H NMR(300MHz,CDCl3)δ=7.20(t,J=7.7Hz,1H),7.30(t,J=7.5Hz,1H),7.36-7.45(m,3H),7.51-7.58(m,5H),7.61-7.67(m,4H),7.89-7.99(m,2H),8.03(d,J=8.1Hz,1H).13C NMR(75MHz,CDCl3)δ=123.90(d,J=8.3Hz,C),125.41(d,J=11.9Hz,CH),125.57(d,J=102.4Hz,C),125.59(d,J=2.7Hz,CH),126.50(d,J=8.2Hz,CH),127.59(d,J=11.6Hz,CH),128.45(d,J=6.3Hz,CH),128.47(d,J=12.5Hz,CH),128.49(d,J=101.1Hz,C),129.37(s,CH),129.48(s,CH),129.70(s,CH),131.06(d,J=10.4Hz,CH),131.24(d,J=2.1Hz,CH),131.51(d,J=2.8Hz,CH),132.69(d,J=7.7Hz,CH),134.90(d,J=5.9Hz,C),135.07(s,C),135.18(d,J=108.8Hz,C),137.89(d,J=10.0Hz,C),138.93(d,J=8.2Hz,C),145.67(d,J=1.6Hz,C).HRMS Calcd.for C26H18OSP[M+H+]409.0810,Found:409.0813. |
II-k产率61%,白色固体,31P NMR(121MHz,CDCl3)δ=12.7(s).1H NMR(300MHz,CDCl3)δ=3.59(s,CH3,3H),7.12-7.15(m,3H),7.33-7.40(m,3H),7.42-7.48(m,1H),7.54-7.56(m,3H),7.62-7.74(m,6H),7.82-7.90(m,1H).13C NMR(75MHz,CDCl3)δ=30.71(s,CH3),108.07(d,J=9.7Hz,C),112.84(d,J=2.8Hz,CH),121.17(d,J=105.7Hz,C),123.04(d,J=7.7Hz,CH),123.59(d,J=12.8Hz,CH),123.63(d,J=6.1Hz,CH),125.41(d,J=11.6Hz,CH),127.23(d,J=9.4Hz,C),128.05(d,J=101.3Hz,C),128.23(d,J=12.5Hz,CH),129.39(s,CH),129.51(s,CH),129.75(s,CH),130.51(s,CH),130.99(d,J=7.4Hz,CH),131.07(s,CH),132.24(s,C),133.01(d,J=8.1Hz,C),135.24(d,J=11.0Hz,C),135.67(d,J=5.0Hz,C),136.48(d,J=107.9Hz,C),140.50(d,J=1.5Hz,C).HRMSCalcd.for C27H21NOP[M+H+]406.1355,Found:406.1356. |
II-l产率53%,白色固体,31P NMR(121MHz,CDCl3)δ=6.8(s).1H NMR(300MHz,CDCl3)δ=7.33-7.45(m,3H),7.51-7.62(m,3H),7.73(t,J=7.7Hz,1H),7.89(t,J=9.0Hz,1H),8.07(dd,J=13.0Hz,7.7Hz,1H),8.23-8.30(m,2H),8.37-8.42(m,2H),9.14(d,J=4.8Hz,1H).13C NMR(75MHz,CDCl3)δ=117.35(s,CH),124.47(d,J=7.0Hz,C),125.44(d,J=9.3Hz,CH),127.00(d,J=100.9Hz,C),128.58(d,J=12.6Hz,CH),129.52(d,J=13.9Hz,CH),130.27(d,J=99.0Hz,C),130.50(d,J=11.5Hz,CH),130.77(d,J=10.5Hz,CH),131.74(d,JP=3.0Hz,CH),132.68(d,J=3.0Hz,CH),132.71(d,J=7.5Hz,CH),133.41(d,J=6.4Hz,CH),134.85(d,J=110.3Hz,C),134.87(d,J=2.9Hz,CH),135.27(d,J=6.0Hz,C),136.47(d,J=10.3Hz,C),148.24(d,J=8.8Hz,C),151.50(s,CH).HRMS Calcd.forC21H15NOP[M+H+]328.0886,Found:328.0888. |
II-m产率84%,白色固体,31P NMR(121MHz,CDCl3)δ=5.4(s).1H NMR(300MHz,CDCl3)δ=7.31-7.47(m,5H),7.51-7.72(m,5H),7.94(ddd,J=12.6,J=7.5,J=1.2Hz,1H),8.04(ddd,J=13.3,J=7.7,J=1.7Hz,1H),8.20(d,J=7.8Hz,1H),8.26-8.29(m,2H),8.38(dd,J=8.6,J=5.9Hz,1H).13C NMR(75MHz,CDCl3)δ=113.05(d,J=105.5Hz,C),114.45(s,CH),115.85(d,J=6.3Hz,CH),119.49(d,J=100.7Hz,C),121.27(s,CH),122.59(s,CH),123.05(d,J=11.0Hz,CH),123.75(d,J=2.3Hz,CH),123.88(d,J=10.9Hz,CH),124.04(d,J=6.8Hz,C),125.83(d,J=0.8Hz,C),127.40(s,CH),128.43(d,J=5.4Hz,CH),128.51(d,J=13.0Hz,CH),131.23(d,J=10.9Hz,CH),131.70(d,J=3.0Hz,CH),132.87(d,J=2.0Hz,CH),133.31(d,J=6.1Hz,CH),134.63(d,J=114.4Hz,C),138.96(s,C),139.60(d,J=4.3Hz,C),140.35(d,J=3.4Hz,C). |
II-n产率55%,白色固体,31P NMR(121MHz,CDCl3)δ=11.1(s).1H NMR(300MHz,CDCl3)δ=7.24-7.36(m,2H),7.53(dd,J=12.6,J=7.5Hz,2H),7.70-7.76(m,1H),7.80(t,J=7.7Hz,1H),8.03-8.21(m,8H),8.34(dd,J=14.0,J=7.0Hz,1H),8.43(d,J=7.5Hz,1H),8.65(d,J=9.5Hz,1H),8.83(d,J=13.4Hz,1H).13C NMR(75MHz,CDCl3)δ=124.61(s,C),125.21(s,CH),125.81(d,J=102.8Hz,C),125.94(s,CH),126.21(d,J=13.0Hz,CH),126.55(s,CH),127.13(s,CH),127.31(d,J=97.5Hz,C),127.41(s,CH),127.55(d,J=6.5Hz,CH),127.96(s,CH and C),128.41(d,J=12.5Hz,CH),128.55(d,J=9.0Hz,C),128.75(s,CH),129.38(d,J=10.9Hz,C),129.82(s,CH),129.87(d,J=7.8Hz,C),130.51(d,J=12.0Hz,C),130.58(d,J=9.8Hz,CH),131.11(s,C),131.43(d,J=2.9Hz,CH),132.03(s,CH),132.08(d,J=6.7Hz,CH),132.33(d,J=1.1Hz,CH),133.02(d,J=2.7Hz,CH),133.24(d,J=6.6Hz,C),133.47(d,J=8.6Hz,C),135.62(d,J=108.9Hz,C).HRMSCalcd.for C32H20OP[M+H+]451.1246,Found:451.1244. |
II-o产率81%,白色固体,31P NMR(121MHz,CDCl3)δ=8.9(s).1H NMR(300MHz,CDCl3)δ=2.35(s,CH3,3H),7.26-7.35(m,3H),7.41(d,J=8.2Hz,1H),7.50-7.65(m,4H),7.81-7.90(m,2H),8.04(d,J=8.3Hz,1H),8.15(dd,J=8.4,5.8Hz,1H),8.23(ddd,J=14.3,7.0,1.4Hz,1H),8.39(d,J=7.5Hz,1H).13C NMR(75MHz,CDCl3)δ=20.96(s,CH3),124.52(d,J=1.8Hz,CH),125.15(d,J=10.1Hz,CH),125.92(d,J=12.7Hz,CH),126.51(d,J=100.5Hz,C),126.64(s,CH),127.88(d,J=99.5Hz,C),128.38(d,J=12.4Hz,CH),128.88(d,J=9.8Hz,C),128.99(d,J=6.8Hz,C),130.09(d,J=1.6Hz,CH),130.64(d,J=10.2Hz,CH),131.29(d,J=2.8Hz,CH),132.24(d,J=6.6Hz,CH),132.90(d,J=6.4Hz,CH),133.36(d,J=8.9Hz,C),133.41(d,J=2.7Hz,CH),133.51(d,J=2.5Hz,CH),135.15(d,J=6.6Hz,C),135.95(d,J=108.9Hz,C),138.44(d,J=11.5Hz,C). |
II-p产率75%,白色固体,31P NMR(121MHz,CDCl3)δ=8.7(s).1H NMR(300MHz,CDCl3)δ=7.29-7.42(m,4H),7.52(dd,J=12.7,J=7.4Hz,2H),7.63-7.75(m,3H),7.95(d,J=8.1Hz,1H),8.10(d,J=8.2Hz,1H),8.21-8.30(m,2H),8.37(d,J=7.6Hz,1H).13C NMR(75MHz,CDCl3)δ=118.13(dd,J=21.8Hz,6.9Hz,CH),120.04(dd,J=21.8Hz,J=2.3Hz,CH),124.95(s,CH),125.68(d,JP-C=102.8Hz,C),126.09(d,J=13.1Hz,CH),126.73(s,CH),127.90(dd,J=11.0Hz,J=7.3Hz,CH),128.16(d,J=9.9Hz,C),128.53(d,J=12.6Hz,CH),128.81(d,J=7.6Hz,C),130.48(s,CH),130.63(d,J=10.4Hz,CH),130.68(dd,JP-C=96.8Hz,J=5.7Hz,C),131.67(d,J=2.8Hz,CH),133.24(d,J=6.4Hz,CH),133.37(d,J=8.9Hz,C),133.74(d,J=2.9Hz,CH),134.09(dd,J=5.8,J=3.5Hz,C),135.02(d,JP-C=110.1Hz,C),162.32(dd,JF-C=252.8Hz,JP-C=15.2Hz,C). |
下面是本发明化合物的应用 |
应用例1 |
表1:化合物的光学性质 |
化合物 | λ<sub>max[nm]</sub> | λ<sub>em[nm]</sub> | Φ<sub>f</sub>[%] | II-a | 367 | 461 | 16 | II-g | 346 | 489 | 6 | II-h | 405 | 455 | 32 | II-k | 359 | 454 | 81 | II-m | 356 | 384 | 18 | II-n | 417 | 498 | 32 |
|
由表1可以看出,当化合物的骨架发生改变时,其光学性质也会发生改变。II-a,II-g,II-h其基本骨架是苯,萘和芘的组合,随着其组合方式不同,紫外吸收波长,荧光放射波长和量子效率都会不同程度的改变。II-g,II-k,II-m都含有氮磷杂原子,但随着分子骨架的改变,其光学性质也会改变,其中量子效率最好的化合物为II-k,达到了81%。由此可以看出,本方法可以通过设计不同骨架的化合物来调节其光学性质。 |
应用例2 |
应用本发明化合物II-n作为OLED器件中的发光材料,另外选用Alq3作为本发明对比材料进行光电性能测定,实施的器件结构如下: |
ITO/MoO3(1nm)/NPB(40nm)/本发明发光材料(10nm)/TBPi(30nm)/LiF(1.0nm)/Al(100nm). |
所用一些材料的结构式如下: |
 |
方法:氧化铟锡(ITO)玻璃基片(中国南坡集团股份有限公司)采用超声清洗,一次用洗涤剂,去离子水,丙酮,异丙醇超声清洗15min,之后在纯净干燥的N2流下吹干。然后,基板转移到真空热蒸发室进一步除去表面污渍。真空蒸渡MoO3,形成1nm厚的空穴注入层。蒸渡NPB,形成40nm厚的空穴传输层。在空穴传输层上蒸渡10nm厚的发光层(化合物II-n)。在发光层上蒸渡30nm厚的TPBi作为电子传输层。最后,蒸渡1nm LiF为电子注入层和100nmAl作为器件阴极。 |
电流密度-电压-亮度(J-V-L)特性由软件控制的Keithley2400source meter和Topcon BM-7A Luminance Colorimeter测定,电致发光光谱由Lab sphere CDS-610测定。器件电致发光光谱由Lab sphere CDS-610测定。器件的光电性能如下: |
表2:器件的光电性质 |
 |
从上表可以看出,随着电流密度的增大,应用本发明化合物II-n作为发光层制备的有机电致发光的发射波长几乎没有发生改变,在相同的条件下,基于本发明化合物II-n的有机电致发光器件的效率明显高于Alq3。因此可以看出,本发明制备的化合物有机电致发光器件具有高的效率。 |